Wastewater Reclamation

Book2

Balaban Desalination Publications

Additional information at http://www.desline.com/

Wastewater treatment, pollutants, membrane filtration, membrane bioreactors, reverse osmosis, membrane fouling, UV oxidation, process control, projects inplementation, economics, commercila plants design

By Mark Wilf with chapters by: Peter Aerts, Craig Bartels, David Bloxom, James Christopher, Adam Foster, Kenny Khoo, Val Frankel, Jill Hudkins, jennifer Muller, Greame Pearce, Rod Reardon and Alan Royce

This is the second guidebook on commercial membrane technology written by a team of membrane technology professionals and published by Balaban Desalination Publications.

The material included in the first guidebook (first published in 2007) mainly covers brackish and seawater desalination technology and applications (1).

This guidebook is dedicated to the membrane technologies applied in wastewater reclamation processes.

The reasons for a separate book on wastewater reclamation technology are related to the unique treatment challenges, potential of sufficient availability, and affordable economics of utilizing this water source:

  1. The water sources used for wastewater reclamation are highly contaminated with constituents that embody conditions of environmental and health concern. Therefore, specialized and highly reliable treatment technologies are required for applications that involve water reuse.

  2. Wastewater is available in abundant quantities at locations that allow convenient conveyance to the treatment facilities and distribution of treated effluent to potential users.

  3. Energy requirement of the treatment process is low compared to other alternatives of augmentation of water supply.

  4. Advances in membrane technology for wastewater reclamation contributed to its increasing recognition as a reliable technology for cost effective production of high quality effluents.

Table of contents

1.      Introduction

Mark Wilf

2.      Wastewater

Rod Reardon

2.1.   Introduction

2.2.   Type of pollutants

2.2.1.      Oxygen demanding substances

2.2.2.      Solids

2.2.3.      Nutrients

2.2.4.      Pathogens

2.2.5.      Metals

2.2.6.      Salts

2.2.7.      Color

2.2.8.      Radio nuclides

2.2.9.      Microconstituents

2.2.9.1.            Endocrine disrupting compounds

2.2.9.2.            Pharmaceutical byproducts

2.2.9.3.            Personal care products

2.2.9.4.            Indicator parameters

2.3.   Characteristics of wastewater feed streams

2.3.1.      Raw wastewater

2.3.2.      Primary effluent

2.3.3.      Secondary effluent

2.3.4.      Tertiary effluent

2.3.5.      Variation in feed water quality and quantity

2.4.   Water quality required for reuse

2.4.1.      Irrigation

2.4.2.      Urban reuse

2.4.3.      Industrial reuse

2.4.4.      Environmental and recreational

2.4.5.      Augmentation of potable water supplies

2.4.6.      Ground water recharge

2.5.   Overview of wastewater treatment process

2.5.1.      Preliminary treatment

2.5.1.1.            Screening

2.5.1.2.            Degritting

2.5.1.3.            Odor control

2.5.2.      Primary treatment

2.5.3.      Secondary treatment

2.5.4.      Tertiary (advanced) treatment

2.5.5.      Disinfection

2.5.5.1.            Chlorine

2.5.5.2.            Ultraviolet light (UV)

2.5.6.      Matching process selection to effluent quality

2.5.7.      Integrating membranes into wastewater treatment

2.5.7.1.            Tertiary membrane treatment

2.5.7.2.            Membrane bioreactors

2.5.7.3.            IMANS (Integrated Membrane Anaerobic Stabilization)

2.6.   Legislation

2.6.1.      Clean water act

2.6.1.1.            Secondary treatment (technology based effluent limits)

2.6.1.2.            Water quality based effluent limits

2.6.1.3.            TMDLs

2.6.1.4.            EPA nutrient strategy

2.6.2.      State regulations

2.6.2.1.            California Title 22

2.6.2.2.            Certification of membrane products for wastewater applications

2.6.2.3.            Florida administrative code 62-610

2.6.2.4.            Other states

2.6.3.      International

2.6.3.1.            World Health Organization

2.6.3.2.            European Union

2.6.3.3.            Singapore

2.6.3.4.            Australia

3.      Introduction to Membranes in Wastewater Treatment

Graeme Pearce

3.1.   Background

3.2.   Why Use Membranes?

3.3.   Markets

3.4.   Cost Analysis

3.4.1.      Survey of O&M Cost Studies

3.4.2.      Survey of Operating Plant O&M Costs

3.4.3.      Energy Comparison Between Wastewater Reuse and Other Sources

4.      Fundamentals of Membrane Filtration

Graeme Pearce

4.1.   Membrane Filtration Basics

4.1.1.      Filtration Spectrum

4.1.2.      Terms & Definitions

4.1.3.      Separation Mechanisms

4.2.   Membrane Characteristics

4.2.1.      Introduction

4.2.2.      Materials and Properties

4.2.3.      Membrane Structure

4.3.   Transport Phenomena

4.3.1.      Transport Model

4.3.2.      UF vs MF

4.3.3.      Operating Regimes

4.4.   Fouling Phenomena

4.4.1.      Background

4.4.2.      Particle Fouling Mechanisms

4.4.3.      Cleaning Procedures

4.4.4.      Fouling Control

4.5.   Effect of Temperature

4.5.1.      Temperature Correction Factor (TCF)

4.5.2.      Applying Temperature Correction

4.6.   Flux & Permeability

4.6.1.      Critical Flux

4.6.2.      Sustainable Flux

4.6.3.      Indicative Flux for Wastewater Treatment

4.6.4.      Permeability Trends

4.7.   Filtrate Quality

4.7.1.      Background

4.7.2.      Turbidity

4.7.3.      Total Suspended Solids (TSS)

4.7.4.      Particle Counting

4.7.5.      Total Dissolved Solids (TDS) & Total Organic Carbon (TOC)

4.7.6.      Silt Density Index (SDI) & Modified Fouling Index (MFI)

4.7.7.      MS2 Virus Challenges

4.8.   Advantages of Membrane Pre-treatment for RO

4.9.   Integrity

4.9.1.      Introduction

4.9.2.      Integrity Comparison of Membrane Filtration with RO

4.9.3.      Fibre Integrity Failure Modes

4.9.4.      Integrity Verification Options

4.9.5.      Basis of the Pressure Decay Test (PDT) Method

4.9.6.      PDT Procedure

4.9.7.      PDT Measurements

4.9.8.      Correlation of PDT Measurements with Log Removal

4.9.9.      Testing & Repair Frequency

5.      Membrane Filtration – Commercial Membranes & Modules

Graeme Pearce

5.1.   History of UF/MF Membrane Development

5.2.   Overview of UF/MF Products

5.2.1.      Background

5.2.2.      Format Comparison

5.2.3.      Applications

5.2.4.      Suppliers

5.2.5.      Product Overview

5.3.   Manufacture of UF/MF Products

5.3.1.      Capillary Membranes

5.3.2.      Fibre Manufacture by the SIPS Process

5.3.3.      Module Fabrication

5.4.   Module Format and System Configuration

5.4.1.      Introduction

5.4.2.      Hollow Fibre/Capillary vs Spiral Wound

5.4.3.      Directflow vs Crossflow

5.4.4.      Inside Feed vs Outside Feed

5.4.5.      Pressurized vs Submerged

5.4.6.      Vertical vs Horizontal

6.      Membrane Filtration System Design

Graeme Pearce

6.1.   Background

6.2.   Flux Selection

6.2.1.      Introduction

6.2.2.      Feed Categorization

6.2.3.      Flux Guidelines

6.2.4.      Selecting Design Flux from Pilot Data

6.3.   System Configuration

6.3.1.      Wastewater Treatment Process Flow

6.3.2.      Membrane Filtration System Process Flow

6.3.3.      Racks for Pressure Driven Systems

6.3.4.      Racks for Submerged Systems

6.4.   Selection and Sizing of System Components

6.4.1.      Outline Design

6.4.2.      Pipework Velocity

6.4.3.      Rack Design

6.4.4.      Redundancy Requirements

6.4.5.      Rack Arrangement Examples

6.4.6.      Tank Sizing

6.4.7.      Design Software

6.4.8.      System Sizing Example

6.5.   Indicative Capital and Operating Costs

6.5.1.      Background

6.5.2.      Capital Expenditure (Capex)

6.5.3.      Operating Expenditure (Opex)

6.5.4.      Total Water Cost (TWC)

6.6.   Orange County, California, USA, Case Study

6.6.1.      Background

6.6.2.      Process Design

6.6.3.      Performance & Experience

6.7.   Public Utilities Board (PUB), Singapore, Case Study

6.7.1.      Background

6.7.2.      Process Design

6.7.3.      Performance & Experience

6.7.4.      Ulu Pandan

6.8.   Benidorm & Rincon de Leon, Spain, Case Study

6.8.1.      Background

6.8.2.      Process Design

6.8.3.      Performance & Experience

6.8.4.      Rincon de Leon

6.9.   Sulaibiya, Kuwait, Case Study

6.9.1.      Background

6.9.2.      Process Design

6.9.3.      Performance & Experience

6.10.  Western Corridor, Brisbane, Australia, Case Study

6.10.1.  Background

6.10.2.  Process Design

6.10.3.  Performance & Experience

7.      Membrane bioreactors – commercial membranes and modules

Val Frenkel

7.1.   Membrane materials and properties

7.2.   Modules configuration

7.3.   Effluent quality

7.4.   Modes of operation

8.      Fundamentals of membrane bioreactors

Val Frenkel

8.1.   Comparison of MBR with the conventional activated sludge process.

8.2.   Hydraulic terms

9.      Membrane bioreactors system design

Val Frenkel

9.1.   System configuration and operating sequence

9.2.   Process components

9.3.   Process alternatives

9.4.   Footprint

9.5.   System operating parameters

9.6.   Influent design parameters

9.7.   Biological process

9.8.    Phosphorous reduction process

9.9.   System hydraulics

9.10.  Sludge management

9.11.  Membrane permeability restoration

9.12.  Usage of chemicals

9.13.  Energy requirement

9.14.  Membrane replacement rate

9.15.  Selection and sizing of system components

9.16.  Membrane unit

9.17.  Major system components

9.18.  Auxiliary equipment

9.19.  Materials of construction

9.20.  System layout

10.  Operation of the MBR systems

Val Frenkel

10.1.  Monitoring of membrane performance

10.2.  Monitoring of biological process

10.3.  Equipment maintenances

10.4.  MBR equipment procurement

11.  Fundamentals of reverse osmosis

Mark Wilf

11.1.  Osmotic pressure of water solution

11.2.  Salt-water separation in reverse osmosis process

11.2.1.  Water transport

11.2.2.  Salt transport

11.3.  Water salinity

11.4.  Permeate recovery rate

11.5.  Average feed salinity

11.6.  Net driving pressure

11.7.  Salt passage and salt rejection

11.8.  Temperature effect on transport rate

11.9.  Average permeate flux

11.10.    Specific water permeability

11.11.    Concentration polarization

12.  Commercial RO membranes and modules

Mark Wilf

12.1.        Manufacturing of composite polyamide membranes

12.2.        Other membrane materials

12.3.        Plate and frame membrane elements

12.4.        Hollow fiber membrane elements

12.5.        Spiral wound membrane elements

12.6.        Spiral wound elements categories

13.  RO unit configuration

Mark Wilf

13.1.        Pressure vessels

13.1.1.  Pressure vessel configuration: “sideport”, “multiport”, “Optiflux”

13.2.        Membrane assembly unit

13.3.        Concentrate staging

13.4.        Permeate flux  and flow distribution

13.5.        Permeate staging (two pass system)

14.  Calculation of system performance

Mark Wilf

14.1.        Manual method of membrane system performance calculations

14.2.        Use of computer programs for projection of membrane performance

15.   Parameters of RO process design

Mark Wilf

15.1.        Feed water composition

15.2.       Indicators of RO feed water quality

15.3.        Membrane fouling

15.3.1.  Oxidative degradation of membrane performance

15.3.2.  Colloidal fouling

15.3.3.  Fouling by organic matter

15.3.4.  Biofouling

15.3.5.  Inorganic scale

15.4.        Permeate flux rate

15.5.        Recovery rate

15.6.        Membrane replacement rate

16.  RO system design

Mark Wilf

16.1.     System configuration

16.1.1.  Remediation of ground water

16.1.2.  Treatment of secondary effluent

16.1.3.  Treatment of MBR effluent

16.2.     Configuration of the pretreatment process

16.3.     Membrane unit

16.3.1.  Membrane unit configuration and components

16.3.1.1.        Membrane elements selection

16.4.        Membrane cleaning unit

16.5.        Permeate processing

16.5.1.        Alkalinity relations in RO process

16.5.2.        Permeate treatment methods

16.6.        Energy requirement in RO applications

16.6.1.        Calculation of energy use

16.6.2.        Pumping equipment

16.7  Process flow diagram and system layout

17.     System operation

Mark Wilf

17.1.        Monitoring system operation

17.2.        Normalization of membrane performance

18.   UV disinfection and reduction of micropollutants

Alan Royce, Kenny Khoo, Adam Festger, Jennifer Muller

18.1.        UV disinfection fundamentals

18.1.1.        The UV radiation

18.1.2.        Inactivation by microorganisms by UV

18.1.3.        UV dose and transmittance

18.1.4.        UV adsorbing compounds

18.2.        UV lamp types and radiation sources configuration

18.3.        UV system components and typical layouts

18.4.        UV system sizing considerations and design parameters

18.4.1.        End of lamp life (EOLL) factor and fouling factor (FF)

18.4.2.        Bioassay validation

18.4.3.        Disinfection limit

18.5.                    UV operating parameters

18.5.1.        UV intensity and dosing

18.5.2.        Equipment maintenance

18.6.        UV oxidation in potable reuse applications

18.6.1.        The use of UV oxidation following membrane process: introduction

18.6.2.        UV light absorption by chemical species

18.6.3.        Factors affecting quantum yield

18.6.4.        UV based advanced oxidation process (AOP)

18.6.5.        UV photolysis

18.6.6.        Kinetics of photolysis reaction

18.6.7.        UV oxidation

18.6.8.        UV photolysis and UV oxidation: simultaneous process

18.6.9.        Measuring the efficiency of UV oxidation: the EEO metric

18.6.10.    Parameters affecting EEO

18.6.10.1.    EEO as a function of UV transmittance

18.6.10.2.    EEO as a function of hydrogen peroxide concentration

18.6.10.3.    EEO as a function of hydroxyl radicals background demand

18.6.10.4.    EEO as a function of flow rate, turbidity, pH, suspended solids, nitrate and iron concentration

18.7.        Design and optimization of UV oxidation system

18.7.1.        System sizing procedure

18.7.2.        Lamp type considerations

18.7.3.        The relation between lamp spectral signature and contaminant absorbance

18.7.4.        Improving UV performance with other technologies

18.8.        Designing UV oxidation system for indirect potable reuse (IPR)

18.8.1.        The use of indicator compound

18.8.2.        Sizing of the UV oxidation system

18.9.        Application examples

18.9.1.        Orange County Water District Ground Water Replenishment System

18.9.2.        West Basin Municipal Water District Water Recycling Facility

19.  Restoration of membrane performance

Craig Bartels

19.1.        Introduction

19.2.        Fouling phenomena

19.2.1.  Performance trends

19.2.1.1.        First stage trends

19.2.1.2.        Second stage trends

19.2.2.  Bofouling and it’s control

19.2.3.  Physical indicators

19.3.        Evaluation of fouled membranes

19.3.1.  Single element testing

19.3.2.  Dissection of elements

19.3.2.1.        Visual inspection

19.3.2.2.        SEM/EDAX

19.3.3.  Other analysis

19.4.        Cleaning procedures

19.4.1.  Timing for cleaning

19.4.2.  Selection of cleaning chemicals

19.4.2.1.        High pH cleaning

19.4.2.2.        Low pH cleaning

19.4.2.3.        Other cleaners

19.4.3.  Permeate flushing

19.4.4.  Other cleaning methods

20.  Project implementation

James Christopher and Jill Hudkins

20.1.  Project Feasibility/Planning

20.1.1.  Technical feasibility

20.1.2.  Financial feasibility

20.1.3.  Development of project schedule

20.2.  Pilot Testing

20.2.1.  Pilot unit configurations and test program

20.2.2.  Schedule and cost of pilot operation

20.3.  Design stages

20.3.1.  Conceptual design

20.3.2.  Preliminary design

20.3.3.  Value engineering

20.3.4.  Final design

20.4.  Permitting

20.4.1.  Disposal of residuals

20.5.  Procurement methods

20.5.1.  Bidding alternatives

20.5.2.  Alternative delivery processes

20.5.2.1.        Traditional design-bid-build

20.5.2.2.        Design – Build

20.5.2.3.        Construction management

20.6.  Start-Up and Testing

20.7.  Training

20.7.1.  Additional training

21.   Economics of membrane treatment projects

Mark Wilf

21.1.  Cost components

21.2.  Calculation of components of product water cost

21.3.  Present worth value

22.  Examples of commercial plant data and design

Craig Bartels

22.1.  Ground water reclamation

22.2.  Singapore wastewater reclamation plants

22.3.  US wastewater reclamation plants

22.4.  Wastewater reclamation at other locations

22.5.  Singapore case study

Dow Corporation – Filmtec

22.6.  Terneuzen case study

Dow Corporation – Filmtec

23.  Process control

David Bloxom and Mark Wilf

23.1.  Introduction

23.2.  Designing of instrumentation and control system

23.2.1.  Control system specifications

23.2.2.  Monitoring of system performance

23.2.3.  Alarms

23.3.  Access levels

23.4.  Specification of scope of work

23.5.  Performance optimization through process optimization

23.6.  Control system redundancy

23.7.  Implementation of control system

23.7.1.  Implementation options

23.7.2.  Recommended implementation approach

24.  Appendixes

A.     Representative configuration of membrane filtration unit

B.     Representative configuration of membrane bioreactor unit

C.     Representative configuration of RO membrane unit

D.     Example of calculation of operating cost of membrane filtration systems

E.      Example of calculation of operating cost of membrane bioreactor

F.      Example of calculation of operating cost of RO systems

G.     Units conversion table

SELECTED PATENTS AND PUBLICATIONS

RESEARCH:

  • Use of Dendrimers to Enhance Selective Separation of Nanofiltration and Reverse Osmosis Membranes. Project founded by U.S. Bureau of Reclamation, 2005.

  • Project # AS-002 Automation and Operation Optimization to Reduce Water Costs. Project founded by Middle East Desalination Research Center, 2004.

  • Boron Rejection by Reverse Osmosis Membranes: National Reconnaissance and Mechanism Study. Project founded by US Bureau of Reclamation, 2003.

  • Study of Wastewater Reclamation Using Backwashable Capillary UF and Encapsulated RO Membrane Modules. Project founded by U.S. Bureau of Reclamation, 1999.

  • Project #97-BS-013 A Novel Method to Permanently Improve the Rejection of RO Desalination Modules to Significantly Lower the Cost of Desalination. Project founded by Middle East Desalination Research Center, 1999

  • Project #97-AS-004a Development of New Technologies for the Re­duction of Fouling & Improvement of Performance in Seawater RO. Project funded by Middle East Desalination Research Center, 1998

PATENTS:

  • U.S. provisional patent application, US 61/146,602, Flexible Capacity Design (FCD) for increasing Permeate Capacity of a Reverse Osmosis system. January 2009. Inventor: Mark Wilf. Assignee: Tetra Tech.

  • U.S. Patent 7,481,917 Filtration device with embedded radio frequency identification (RFID) tags, issued January, 27, 2009. Inventors: Norio Ikeyama and Mark Wilf. Assignee: Nitto Denko.

  • U.S. Patent 7,584,061, Device for measuring permeate flow and permeate conductivity of individual reverse osmosis modules. Issued September 1, 2009. Inventors: Mark Wilf, Rich Franks, Craig Bartels, Norio Ikeyama. Assignee: Nitto Denko.

  • PCT Application, PCT/US03/19689, Methods for Reducing Boron Concentration in High Salinity Liquids, Inventors: Mark Wilf, Craig Bartels, Masahiko Hirose. Assignee: Nitto Denko.

  • US Patent # 7,442,309, Methods for Reducing Boron Concentration in High Salinity Liquids, Inventors: Mark Wilf, Craig Bartels, Masahiko Hirose. Assignee: Nitto Denko.

  • EP 1 392 410 B1, Water treatment apparatus, issued September 07, 2005. Inventors: Masahiko Hirose, Atsushi Hiro and Mark Wilf. Assignee: Nitto Denko.

  • U.S. Patent 6,805,796 Water treatment apparatus, issued September 07, 2005. October 19, 2004. Inventors: Masahiko Hirose, Atsushi Hiro and Mark Wilf. Assignee: Nitto Denko.

  • U.S. Patent 6,821,430 Method of treating reverse osmosis membrane element, and reverse osmosis membrane module, issued November 23, 2004. Inventors: Andou Masaaki, Watanabe Terutaka, Hirose Masahiko, Hachisuka Hisao, Wilf Mark,  Bartels Craig, Andes Keith, Assignee: Nitto Denko.

  • U.S. Patent 5,905,197 Membrane Sampling Device, issued May 18,1999. Inventor: Mark Wilf, Assignee: Hydranautics.

PAPERS AND PUBLICATIONS 

  • “The Guidebook to Membrane Technology for Wastewater Reclamation. Wastewater Treatment, Pollutants, Membrane Filtration, Membrane Bioreactors, Reverse Osmosis, Fouling, UV Oxidation, Process Control, Implementation, Economics, Commercial Plants Design” by M. Wilf with chapters by C. Bartels, D. Bloxom, J. Christopher, A. Festger, K. Khoo, V. Frenkel, J. Hudkins, J. Muller,  G. Pearce R. Reardon and A. Royce, Balaban Desalination Publications (January 2010)

  • “The Guidebook to Membrane Desalination Technology. Reverse Osmosis, Nanofiltration and Hybrid Systems. Process, Design and Applications” by M. Wilf with chapters by C. Bartels, L. Awerbuch, M. Mickley, G. Pearce and N. Voutchkov, Balaban Desalination Publications (2006)

  • Craig Bartels, Sandro Cioffi, Stefan Rybar, Mark Wilf, Erineos Koutsakos, Long term experience with membrane performance at the Larnaca desalination plant, Desalination 221 (2008) 92-100

  • Bartels, M. Wilf, W. Casey and J. Campbell, “New generation of low fouling nanofiltration membranes”, C. Desalination 221 (2008) 158 – 167

  • Brett Andrews, Bhasker Davé, Paloma López-Serrano, Shih-Perng Tsai, Rich Frank, Mark Wilf, Erineos Koutsakos, Effective scale control for seawater RO operating with high feed water pH and temperature, Desalination 220 (2008) 295-304

  • M. Gonzales, J. Curbelo, A. Abandes, C. Bartels, S. Talo, M. Wilf and J. Suarez, “Evolution of Configuration and Operation Regime at the Las Palmas III Seawater Desalination Plant” Proceedings of IDA Desalination Conference, Las Palmas, October 2007.

  • C. Bartels, S. Rybar, M. Vondar, M. Wilf, M. Estaban and M. Jefferies, “Rehabilitation of Performance of RO Seawater Plant Through Improvement of Pretreatment” Proceedings of IDA Desalination Conference, Las Palmas, October 2007.

  • ” H. Hyung, P. Mane, J. Brown, M. Wilf, J. Park, S. Kim and J. Kim, “Boron Rejection by SWRO Membranes: From Transport Mechanism to Process Cost Analysis Proceedings of IDA Desalination Conference, Las Palmas, October 2007.

  • “Improving Total Cost of Desalination by Membrane Pre-Treatment” C. Bartels, G. Pearce and M. Wilf, Proceedings of IDA Desalination Conference, Las Palmas, October 2007.

  • C. Bartels and M. Wilf, “Use of Dendrimers to Enhance Selective Separation of Nanofiltration and Reverse Osmosis Membrane” Final Report of Contract no. 05FC811176, US Bureau of Reclamation (April 2007)

  • N. Lior, A. El-Nashar, C. Sommariva, M. Wilf, “ Automation and operation optimization to reduce water cost” Middle East Research Desalination Center, Report of contract #  97-AS-002 (2006)

  • C. Bartels, R. Franks, S. Rybar, M. Schierach, M. Wilf, “The effect of feed ionic strength on salt passage through reverse osmosis membranes”, Desalination 184 (2005)185-195.

  • C. Bartels, M. Hirose, H. Seah and M. Wilf, Optimization of permeate quality in RO seawater systems, Proceedings of IDA Water Desalination Conference, Singapore (2005)

  • B. Liberman and M. Wilf, Evolution of configuration of RO seawater desalination systems,  Proceedings of IDA Water Desalination Conference, Singapore (2005)

  • C. Bartels, M. Wilf, K. Andes and J. Iong, “Design considerations for wastewater treatment by reverse osmosis“, Water Science and Technology, Vol 51, pp 473, 2005

  • N. Lior, A. El-Nashar, C. Sommariva and M. Wilf, An update on the state of information, measurement, control and automation in water desalination, Proceedings of IDA Water Desalination Conference, Singapore (2005)

  • M. Wilf and C. Bartels, Optimization of seawater RO system design, Desalination 173 (2005) 1 – 12.

  • M. Wilf, “Reverse Osmosis”, chapter in Encyclopedia of Water Science, Marcel Dekker Inc. New York 2003, pp: 803 – 808.

  • L. Stevens, J. Kowal, K. Herd, M. Wilf, W. Bates, Tampa Bay seawater desalination facility: start to finish, Proceedings of IDA Water Desalination Conference, Bahamas (2003)

  • K. Andes, C.R. Bartels, J. Iong, M. Wilf, “Design considerations for wastewater treatment by reverse osmosis”, Intern. Desalination Assoc.,  World Congress on Desalination and Water Reuse, September 28-October 3, 2003, Bahamas, Paper BAH03-060

  • L. Song, J. Hu, S. Ong, W. Ng, M. Elimelech and M. Wilf, Emergence of thermodynamic restriction and its implications for full-scale RO processes, Desalination 155 (2003) 213-218

  • P. Glueckstern, M. Priel and M. Wilf “Field evaluation of capillary UF technology as pretreatment for large scale seawater RO system”.  Proceedings of EDS Conference, Toulouse (2002)

  • C. Bartels and M. Wilf, Selective Color Removal Nanofiltration Membrane for the 7 MGD irvine Ranch Water Treatment project, Proceedings, of the Membranes in Drinking and Industrial Water Production MDIW Conference, Mülheim an der Ruhr  ( 2002)

  • M. Wilf and Manfred K. Schierach, “Improved performance and cost reduction of RO seawater systems using UF pretreatment”, Desalination 135 (2001) 61-68

  • Shyam S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, “Concentration polarization in ultrafiltration and reverse osmosis: a critical review”, Desalination 141 (2001) 269-289

  • M. Wilf and S. Alt “Study of wastewater reclamation using backwashable capillary ultrafiltration and encapsulated reverse osmosis modules”, Final report for Bureau of Reclamation, Contract No. 1425-97FC-81-30068, Water Treatment Technology Program Report No. 42, June 1999.

  • M. Wilf  “Reverse  Osmosis for Water Reclamation” , Water Reclamation  and Reuse, Water Quality Management Library – Volume 10, Technomic Publishing Inc., Lancaster Pennsylvania 1998, pp: 263 – 345.

  • M. Wilf and Kenneth Klinko “Effect of New Pretreatment Methods and Improved Membrane Performance on Design of RO Seawater Systems” , Proceedings of  IDA World Congress on Desalination and Water Reuse, October 1997, Madrid, Vol 1, pp: 357 – 372.

  • M. Wilf, “Effect of New Generation of Low Pressure High Salt Rejection Membranes on Power Consumption of RO systems”, Proceedings of the AWWA Membrane Technology Conference and Exposition, New Orleans, LA (February 1997).

  • M. Wilf, “New Generation of Low Pressure High Salt Rejection Membranes”, Proceedings of the 1996 Biennial Conference and Exposition, Monterey, California (August 1996).

  • M. Wilf and K. Klinko, Performance of commercial seawater membranes., Desalination, 96 (1994) pp. 465 – 478

  • M. Wilf, P. Chebi, P. Lange and P. Laverty, “Design and Performance of a Large reverse Osmosis Softening Plant,” Proceedings of the IDA World Conference on desalination and water Reuse, Washington (August 1991).

  • W. Dunivin, P. Lange, R. Sudak and M. Wilf, “Reclamation of Ground water Using RO Technology”, Proceedings of the IDA World Conference on Desalination and water Reuse, Washington (August 1991).

  • S. Kremen, M. Wilf and P. Lange, “Operation results and Economics of Single Stage and Two-Stage Large Size Sea Water RO System”, Proceedings of the 12th International Symposium on Desalination and Water Re-use, Malta (April 1991), Vol 2.

  • M. Wilf, S. Kremen, P. Lange and I. Watson, “A Decade of Reverse Osmosis Plant Experience in Florida”, Presented at the NWSIA Meeting, Orlando, Florida, August 1990.

  • M. Wilf, “Design of Commercial Reverse Osmosis Systems”, American Water Works Association Membrane Technology Conference, Reno, Nevada (August 1995)

  • M. Wilf, P. Lange and P. Laverty, “Application of Reverse Osmosis Technology for Water  Reclamation in Southern California”, International seminar on efficient water reuse, Mexico City, Mexico (October 1991)